Thank you for participating in SowBridge 2010. To start this presentation, advance one slide by pressing enter or the down or right arrow key.

Timing of A.I.

Dr. Tim Safranski
University of Missouri
(573) 884-7994
safranskit@missouri.edu

SowBridge
July 7, 2010

OUTLINE
- overview of estrous cycle, ovulation
- overview of insemination, capacitation
- theoretical perspective of appropriate timing of AI
- evaluation under field conditions
- the future

When to Inseminate?

- Satisfactory reproductive performance should result if females are inseminated with fresh semen (<72 hours-old) 0 to 24 hours prior to the time of ovulation.
- When using “older” or frozen semen superior performance requires inseminations be closer to the time of ovulation.
- **Goal**: Have an adequate population of fertile, capacitated sperm present in the female just prior to the time of ovulation.

Swine AI

- heat detection 1x or 2x daily
- intracervical semen deposition
- mate twice or more per estrus
- 3 billion cells per dose
- 12-24 hours between matings
- only one mating is needed; which one?
Sperm reside in the female reproductive tract for about 8 hours before they are capable of penetrating the ova (capacitation).

Sperm remain viable in the female’s tract for about 24 hours.

After ovulation viability of the ova is rather limited.

Estrus and Ovulation After Weaning

- **Conception Rate (%)**
 - Interval from Ovulation to Insemination (h)

Using Wean-to-Estrus Intervals as an Aid in Timing of Inseminations

- **Time of Ovulation and Length of Estrus (Hours)**
 - Life span = 24 hr
 - Life span = 6-8 hr

A.I. model

- Schedule of inseminations, h

Percentage

- Estrus and Ovulation
 - Day Postweaning

Using Wean-to-Estrus Intervals

- **From:** Kemp & Soede, 1996, JAS, 74:944 (adapted from Singleton)

A.I. model

- Predicted dollar return
 - Heat detection
 - Intake data

A.I. model

- Lamberson and Safranski, 2000
why is on-time delivery important?

sperm too early
- sow not standing solid
- dead prior to ovulation
- critical with compromised sperm (old, frozen etc.)

sperm too late
- sow not standing solid
- fail be capacitated prior to ovulation
- cause immune system activation

Why Not Multiple Inseminations?

- waste time?
 - could be doing other things
- waste semen?
 - cost
 - use lower quality boars to obtain 2x sperm #
- stress on sow?
- hyperactivate immune system?

Table 1. Distribution of sows according to the interval between inseminations and the number of post-ovulatory follicles

<table>
<thead>
<tr>
<th>Interval between inseminations</th>
<th>24 h</th>
<th>12 h</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of AEC per sow</td>
<td>20.3</td>
<td>26.3</td>
<td>27.7</td>
</tr>
<tr>
<td>% sows without post-ovulatory</td>
<td>28.1</td>
<td>26.3</td>
<td>27.7</td>
</tr>
<tr>
<td>% sows with one post-ovulatory</td>
<td>63.3</td>
<td>42.6</td>
<td>53.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group</th>
<th>No post-ovulatory AEC</th>
<th>One post-ovulatory AEC</th>
<th>Two post-ovulatory AEC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Alcocestus (24h interval)</td>
<td>187</td>
<td>90.3</td>
<td>90.3</td>
</tr>
<tr>
<td>Three Alcocestus (24h interval)</td>
<td>116</td>
<td>90.4</td>
<td>100.3</td>
</tr>
<tr>
<td>Four Alcocestus (48h interval)</td>
<td>109</td>
<td>90.7</td>
<td>100.3</td>
</tr>
</tbody>
</table>

Adjusted total born (mean ± SE) per 100 sows are: Two Alcocestus 110.3 ± 0.5, Three Alcocestus 100.3 ± 0.5, Four Alcocestus 100.3 ± 0.5.
Figure 1. Relationship between standing ova-to-ovulation interval and duration of standing ova.

Terqui et al., 2000

AIOV = AI to ovulation interval
PR = pregnancy rate
TE = total number of embryos

Table 1. Storage time (h) to AIOV (h) and PR (n/n) and TE.

<table>
<thead>
<tr>
<th>Storage time (h)</th>
<th>AIOV (h)</th>
<th>PR (n/n)</th>
<th>TE (x)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-48</td>
<td>0-12</td>
<td>93.4 (37/61)</td>
<td>14.1 ± 3.2</td>
</tr>
<tr>
<td>13-23</td>
<td>13.9 (34/77)</td>
<td>14.2 ± 4.8</td>
<td></td>
</tr>
<tr>
<td>24-30</td>
<td>13.9 (38/31)</td>
<td>13.2 ± 3.9</td>
<td></td>
</tr>
<tr>
<td>96-120</td>
<td>13-23</td>
<td>73.1 (30/38)</td>
<td>14.3 ± 4.7</td>
</tr>
<tr>
<td>24-30</td>
<td>30.8 (41/31)</td>
<td>6.5 ± 3.1</td>
<td></td>
</tr>
</tbody>
</table>

*LS mean ± standard deviation.

AIOV = AI to ovulation interval
PR = pregnancy rate
TE = total number of embryos

Almeida et al., 2000

Steverink et al., 1999

Bennemann et al., 2006

Stevens et al., 1999
Belstra et al., 2004

- DE and Est. to Ov. as in research literature
- WEI \(\uparrow \) on 2 of 3 in summer (~8hr)
- WEI of P1 > P3 and older in spring
- WEI of P1 > P2 and older in summer
- DE and EOI \(\uparrow \) linearly w/ parity in summer
- also varied by genetics and lactation length
- EOI ranged: 18-72hr, 24-60hr, 18-66hr by farm

Belstra et al., 2004

- PG-600®
 - 400 IU PMSG (Pregnant Mares Serum Gonadotropin)
 - (Follicle Stimulating Hormone; FSH)
 - 200 IU HCG (Human Chorionic Gonadotropin)
 - (Luteinizing Hormone; LH)

Cassar et al., 2005

*This project was conducted in Canada as compounds are not currently available for use on U.S. pig farms.

Cassar et al., 2005

| Variable | Control | PG-600® | PMSG | HCG | PMSG + HCG | PMSG + HCG
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Day after estrus</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Days</td>
<td>4.16</td>
<td>4.16</td>
<td>4.16</td>
<td>4.16</td>
<td>4.16</td>
<td>4.16</td>
</tr>
<tr>
<td>Days (incidence)</td>
<td>8.33</td>
<td>8.33</td>
<td>8.33</td>
<td>8.33</td>
<td>8.33</td>
<td>8.33</td>
</tr>
<tr>
<td>Days (duration)</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
<td>4.25</td>
</tr>
<tr>
<td>Days (percentage)</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Days (percentage)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Wayne Singleton
Purdue University

MATRIX™ (altrenogest)
- FDA approved product for estrus synchronization in cycling gilts
- Applied to feed 15 mg/hd/day for 14 days

Heat Detection

Primary Signs
- Stands for boar
- Stands for another female
- Stands for back pressure test

Secondary Signs
- Erect ears
- Seeks boar
- Swollen vulva
- Relaxes tail when touched
- Mucous discharge
- Leaded vulva
Conclusions

- timing of A.I. is critical to success
- best time may be farm dependent (genetics, facilities, health, parity, season, records, etc.)
- knowing best time to A.I. irrelevant without good detection of estrus
- text book answer would be breed at 0 and 24 hours or 12 and 36 hours after first detected heat, as long as she still stands