Thank you for participating in SowBridge 2010.

to start this presentation, advance one slide by pressing enter or the down or right arrow key.

SowBridge
Air Filtration Systems for Sow Barns

Steve Pohl
South Dakota State University
steve.pohl@sdstate.edu
605-688-5662

SowBridge

Breeding Herd Education Series
2010
Timely, relevant & convenient learning

SowBridge

SDEC research update: Filtration

• Large sow herds
 • 2/10 filtered farms infected
 • 19/21 non-filtered farms infected
 • 5/19 infected 2x
 • 2/19 infected 3x
• Scott Dee research

Sites Surrounding 3000 Sow Facility

Scott Dee’s Research Studies
Testing filters to preventing airborne PRRSV spread from chamber 1 to chamber 2 at concentrations ranging from 1-9 logs of virus

Evaluating a Facility for Filtration

• Does the present ventilation system meet industry standards?
• What types and sizes of filters are needed?
• What will happen to overall ventilation system performance when filters are put in place?
• How much will it cost to install a complete filtration system?
• What is the longevity of the filters under these conditions?
Design Considerations

• What types of ventilation system facilitates filtration
 - Ceiling inlets
 - Cool cells

• Static pressure effects on the ventilation system

• MERV-16 filters vs. MERV-14 filters

Recommended Ventilation Rates (cfm/pig)

<table>
<thead>
<tr>
<th></th>
<th>Minimum</th>
<th>Mild</th>
<th>Hot weather</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sow & Litter (cfm/sow)</td>
<td>20</td>
<td>80</td>
<td>500</td>
</tr>
<tr>
<td>Finishing 150-250#</td>
<td>10</td>
<td>35</td>
<td>120</td>
</tr>
<tr>
<td>Gestating Sows</td>
<td>12</td>
<td>40</td>
<td>150</td>
</tr>
<tr>
<td>Breeding Sows</td>
<td>14</td>
<td>50</td>
<td>300</td>
</tr>
<tr>
<td>Boars</td>
<td>14</td>
<td>50</td>
<td>300</td>
</tr>
</tbody>
</table>

Typical Filter Set-ups

Main Types of Systems

Negative Pressure 'Exhaust'
- Slight vacuum
- Most common for livestock buildings

Positive Pressure 'Pushed Air'
- Rise in pressure
- Think grain drier

Neutral Pressure 'Push-Pull'
- Balanced pressure

Fan Test Data (52-inch Fan)

<table>
<thead>
<tr>
<th>Static pressure</th>
<th>Speed</th>
<th>Airflow</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>in. H2O</td>
<td>rpm</td>
<td>cfm</td>
<td>cfm/W</td>
</tr>
<tr>
<td>0.00</td>
<td>649</td>
<td>29,500</td>
<td>23.8</td>
</tr>
<tr>
<td>0.05</td>
<td>647</td>
<td>28,100</td>
<td>21.5</td>
</tr>
<tr>
<td>0.10</td>
<td>646</td>
<td>26,600</td>
<td>19.5</td>
</tr>
<tr>
<td>0.15</td>
<td>645</td>
<td>25,000</td>
<td>17.7</td>
</tr>
<tr>
<td>0.20</td>
<td>643</td>
<td>23,200</td>
<td>15.7</td>
</tr>
</tbody>
</table>

Airflow Ratios

Airflow ratio = [airflow at 0.20”s.p. divided by airflow at 0.05” s.p.]
Example: 51-inch fan
Ratio = 21,100 cfm/28,300 cfm
Ratio = 0.75
Fan Test Data (52-inch Fan)

<table>
<thead>
<tr>
<th>Static pressure (in. H₂O)</th>
<th>Speed (rpm)</th>
<th>Airflow (cfm)</th>
<th>Efficiency (cfm/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>448</td>
<td>25,500</td>
<td>29.5</td>
</tr>
<tr>
<td>0.05</td>
<td>446</td>
<td>23,200</td>
<td>25.6</td>
</tr>
<tr>
<td>0.10</td>
<td>445</td>
<td>20,600</td>
<td>22.2</td>
</tr>
<tr>
<td>0.15</td>
<td>445</td>
<td>16,800</td>
<td>18.1</td>
</tr>
<tr>
<td>0.20</td>
<td>447</td>
<td>9,900</td>
<td>11.5</td>
</tr>
</tbody>
</table>

BESS Lab Airflow ratio = 9,900 cfm/ 23,200 cfm = 0.43 “Not very good”

Static Pressure and Airflow Resistance

- **Airflow resistance**
 - Restricts airflow
 - Increases static pressure
 - Makes fans work harder
 - Less efficient

- **Desired static pressure**
 - 0.05” H₂O
 - No more than 0.12” H₂O

Static Pressure Points

- Air intake (less than 0.04 inches)
- Air inlet (0.04 to 0.10 inches)
- Fan pit transitions (less than 0.05)
- Filters (without push fans)
 - Pre-filter (from 0.03 inches to 0.08 inches)
 - MERV 16 or 14 filters (less than 0.15 inches)
- Cool cells (0.05 inches)

Note: Static pressures are additive and should not exceed 0.20 inches

Filter Ratings, ASHRAE 52.2

- MERV (minimum efficiency reporting value)
- Based on the efficiency at various particle sizes and airflow rates
- **ASHRAE 52.2**
- Currently using:
 - MERV 8 as a pre-filter (2” depth)
 - MERV 16 as the PRRS capturing filter or,
 - MERV 14

www.mwps.org to order

Or

access fan data online at:
www.bess.uiuc.edu
Stages of Fan Operation: 2600 Sow Facility

<table>
<thead>
<tr>
<th>Stage</th>
<th>Pre-Filter Diameter</th>
<th>Cfm at 0.10</th>
<th>Cfm at 0.15</th>
<th>Cfm at 0.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1:</td>
<td>24"</td>
<td>47,200</td>
<td>50,880</td>
<td>54,960</td>
</tr>
<tr>
<td>Stage 2:</td>
<td>26"</td>
<td>67,200</td>
<td>63,000</td>
<td>60,000</td>
</tr>
<tr>
<td>Stage 3:</td>
<td>51"</td>
<td>84,000</td>
<td>78,600</td>
<td>72,500</td>
</tr>
<tr>
<td>Stage 4:</td>
<td>51"</td>
<td>99,600</td>
<td>92,400</td>
<td>84,800</td>
</tr>
<tr>
<td>Stage 5:</td>
<td>51"</td>
<td>149,400</td>
<td>133,800</td>
<td>115,200</td>
</tr>
<tr>
<td>Stage 6:</td>
<td>51"</td>
<td>149,400</td>
<td>133,800</td>
<td>115,200</td>
</tr>
</tbody>
</table>

Total Ventilation: 543,200 cfm/2600 sows = 209 cfm/sow

Two Inch Pre-Filter

MERV 16 Filter
- 24” X 24” Filters (L9 Camfil-Farr)
- 2000 cfm at 0.8 inches static pressure
- Typically 400 to 500 cfm per 24” x 24” filter with MERV-8 pre-filter

MERV 14 Filter
- 24” X 24” Filters (L6 Camfil-Farr)
- 2000 cfm at 0.37 inches static pressure
- Typically 500 to 700 cfm per 24” x 24” filter with pre-filter

Airflow with Pre-filter
- L6 = 175 cfm/ft²
- L9 = 112 cfm/ft²

@ 250 cfm/crate gestation
- L9 = 1.8 crates/filter
- L6 = 2.8 crates/filter
Selecting filters

- Work with factory representatives to obtain documentation showing the new MERV ratings for their products.
- Not all filters are alike.
- MERV ratings encourage filter selection based on particle size requirements.
- Inspect filter installations for good sealing and damage. No filter can stop particles that bypass the media.
- What is filter effectiveness at low airflow rates
- Confirm that filters have manometers to indicate the time for change-out, and monitor filters regularly.

Filter Longevity

Pre-filter: Approximately 6 months to one year

MERV 16 or 14 Filters: Unknown

A 1200 cfm ceiling inlet would require a 2’ x 4’ filter box

Problem Areas

2600 Sow Facility with Cool Cells
Building Airflow

Filtration Costs
- Without cool cells: $150 to $175 per sow
- With cool cells: $220 to $250 per sow
- 3000 sow unit: 100 cases of caulk (4 men and 2 weeks)
- Unexpected cost (the plywood ceiling started to come down)

Summary
- Apply good design practices
- Understand the effects of static pressure on the ventilation system
- Use high quality filters
- Lots of planning and caulking
- New facilities being built with MERV-14 Camfil-Farr filters or MERV-16 Clarcor
- Remember: All other bio-security measures need to be in place before considering filtration

Conclusions
- It is feasible from a ventilation standpoint to install a filtration system
- Cost of filtration is influencing decision makers
- So far so good for boar studs and sow units

Thank You

Questions???