Thank you for participating in SowBridge 2010. To start this presentation, advance one slide by pressing enter or the down or right arrow key. To see the additional pieces on this CD, click on the links below.

swinezoonosesUMN.pdf
09OSHA.influenza-workers-pigs.pdf

Overview

• Occupational injuries and illnesses within swine production facilities
• Common zoonotic diseases from pigs
• Recent issues
 – Streptococcus suis
 – Influenza
 – MRSA

Occupational Illness and Injury

• Agriculture as a profession has one of the highest annual injury rates
 – Typical causes for injuries - falls, machinery, and animals

 • Agriculture ranked 2nd among industries for occupational deaths

 Nat. Safety Council 2004

University of Minnesota Survey (2006)

• 24% of producers reported that work related injuries or illnesses have increased
• Most frequent employee injuries and illnesses:
 – Cuts (56%)
 – Needle Sticks (40%)
 – Back Injuries (41%)
• No significant difference in reported injuries/illnesses between small and large operations

Taylor 2006 MPH

Other Issues for Swine Workers

• Increased prevalence of respiratory symptoms over community controls
• Potential for zoonotic Diseases
Zoonoses - Definition

- Those diseases and infections which are naturally transmitted between animals and man
 - World Health Organization (1982)
- Defining criteria
 - Pathogen that has a nonhuman vertebrate reservoir (such as dogs and rabies)
 - Transmission from animals to humans
 - Recognized infectious disease syndrome in susceptible people
- Key word is “between”

Some Potential Zoonotic Diseases/Agents from Swine*

- Campylobacter
- Dermatophytes
- Erysipelas
- Leptospirosis
- Roundworms
- Salmonella
- Toxoplasma gondii

*Focused on swine production in the United States

Recent Diseases of Concern

- Streptococcus suis
- Influenza
- MRSA

Background: Streptococcus suis

- Causes a wide range of diseases in pigs, including meningitis, septicemia, pneumonia, endocarditis, and arthritis
- First human case was reported in Denmark in 1968
- Prior to 2005, 200 cases have been reported worldwide (most from European and Asian countries)
- S. suis infection is the porcine version of human group B strept disease (Sriskandan S. PloS Medicine 2006;3:595-7)

Streptococcus suis: an emerging zoonotic pathogen

- In July 2005, the largest outbreak of human S. suis occurred in Sichuan province, China
- 204 people were infected; 38 died
- Previously, two outbreaks were reported from Jiangsu province in 1998 and 1999
- Repeated intensive outbreaks of human S. suis have raised public concern

Common Symptoms

- Acute Complaints
 - High fever
 - Headache
 - Chills
 - Vomiting
- Complications
 - Hearing loss
 - Ataxia coma
 - Severe myalgia
 - Ecchymosis

Types of Infections (Human)

- Meningitis (purulent)
- Septicemia and septic shock
- Arthritis
- Endocarditis
- Pneumonia
- Peritonitis

Epidemiology

- Human infection is mainly caused by direct contact with carrier/sick pigs or raw pork contaminated with S. suis
- Transmission occurs via wounds or mucous membranes
- At risk groups include: pig farmers, abattoir workers, meat-processing workers, and veterinarians
- Immunocompromised and asplenic individuals are at increased risk

Common Factors from Documented Outbreaks

- History of S. suis disease among pigs in the region
- Nearly all the patients had contact with sick pigs
 - Slaughtered sick pigs
 - Skin abrasions or cuts
- In the 2005 outbreak, 61 (28%) of the farmers had streptococcal toxic shock syndrome; 38 (62%) died

Questions?

- Could this be an issue in the United States?
- Main infectious source is sick pigs
 - In China, there was a need for improved pig raising conditions (feed, ventilation, and housing)
 - Reason for on-farm prevention and control measures
 - Vaccination?
- Appropriate slaughter practices
 - Don’t slaughter sick pigs
- Cover wounds, wash hands, clean utensils
- Thorough cooking

Recent Human S. suis Infection from the United States

- 59 year old, previously healthy male farmer presents with a sudden onset of fever and confusion
- Presented with high fever, elevated WBC, and had evidence of bacteria from cerebral spinal fluid
 - CSF – cloudy, Gram stain = gram positive diplococci
 - Blood and CSF cultures – S. suis
- Are cases missed?

Comments

- It appears that strains from the Chinese outbreaks are different than US S. suis strains
- Has a new, highly virulent strain of S. suis emerged?
- Emphasizes a need for good animal and human disease surveillance systems to alert farmers and the public when zoonotic outbreaks occur
Influenza

Influenza A viruses are endemic causing disease in humans, horses, pigs, cats, dogs, ferrets and birds.

Influenza A are classified by their surface proteins (e.g. H5N1):
- Hemagglutinin (H)
- Neuraminidase (N)

Influenza Viruses

Role of Pigs

- Swine have also been considered to be prime intermediate hosts (“Mixing vessels”)
- Intermingling of pigs, poultry and people sets the stage for emergence of new influenza virus strains
- However, none of the 3 major human influenza outbreaks last century (1918 (H1N1), 1957 (H2N2), 1968 (H3N2)) originated from pig

Occupational Disease

- Relatively common but usually mild illness with limited person to person transmission
- Increased occupational risk for avian influenza was documented from more intensive poultry exposure (i.e. butchering and exposure to ill poultry)
 - Bridges CB, et al J Inf Dis 2002;185:1005-1010
- Study documented past influenza infection in a duck hunter and 2 DNR workers
 - Gill et al. EID 2006;12:1284-1286

Serologic Evidence of Swine Influenza

Farm Residents and Employees

- Persons working on swine operations were likely to have antibody titers to swine influenza viruses than to urban controls (p<0.0001)
- Presence of antibodies, does not necessarily mean illness
- “Swine farmers may serve as a sentinel population to evaluate the emergence of new influenza viruses”
 - Olsen C, et. al. EID 2002;8:814-819
H1N1 in Minnesota and South Dakota Fair Pigs

- During 2008-9, 124 show participants and 149 pigs were enrolled in an influenza study
- No influenza virus identified in 2008
- In 2009, 7 influenza isolates were recovered (6 were H1N1 2009)
- Evidence of circulating H1N1 in people during this time

Recommendations

- Government agencies (USDA and CDC) are interested in monitoring changing influenza virus
- OSHA has provided some guideline to protect workers and pigs (enclosed)
- Keep ill workers out of the barn

MRSA

Methicillin-resistant Staphylococcus aureus

- Leading cause of pneumonia, surgical wound, and bloodstream infections in hospitalized patients
- MRSA infections are documented in hospitalized patients and residents of long-term care facilities (HA-MRSA)
- 1990’s: a new manifestation of MRSA emerged among cases with no history of hospitalization - community-associated infections (CA-MRSA)

MRSA in Animals

- MRSA was isolated from cows with mastitis (Devriese et al., 1972)
- Since then MRSA has been found in a variety of domestic species:
 - Dogs
 - Cats
 - Horses
 - Sheep
 - Pigs
 - Marine mammals

Human Nasal Colonization of Staph aureus, United States

- The prevalence of Staph aureus colonization in 2003-2004 was 29%
- The prevalence of MRSA colonization was 1.5%
- Majority of isolates were health-care associated strains (USA100 and USA800)

| Gorwitz RJ et al. JID 2008:197:1226 |

| MRSA in Animals | Gorwitz RJ et al. JID 2008:197:1226 | 28 | 29 |
MRSA and Pigs

- Pig farming is a risk factor for nasal colonization (Armand-Lefèvre, 2005; Aubry-Damon 2004)
- Majority of the isolates from pigs have been non-typable by smal PFGE – Classified as sequence type 398 (ST398)
- Higher rates of colonization found in veterinarians, especially swine practitioners
- Mostly asymptomatic…rare clinical infections in pigs

MRSA and Pigs

- Unclear how this strain emerged
- Retail meat studies have documented MRSA in 3.1% of pork samples (human or pig source?)
- What is the role of food-borne transmission?

MRSA and Food Products

- *Staph aureus* is frequently found in food and has traditionally been associated with “food poisoning”
- With the emergence of a new strain in pigs (ST398), several surveys have been done:
 - 264 (12%) of 2217 samples (Dutch)
 - 47 (39%) of 120 retail meats (USA)
 - 31 (8%) of 402 retail meats (Canada)

MRSA and Food Products

- MRSA strains do not have enterotoxins; hence “food poisoning” has not been demonstrated
- Development of invasive disease after ingestion of contaminated food is rare – one documented case in a hospitalized patient
- There is a potential for becoming colonized with MRSA during handling or ingestion of contaminated food – This is a minimal risk if food is cooked and properly handled

Summary

- Injuries account for the majority of occupational risks on swine operations
- High profile topics like influenza and MRSA should stimulate employers to talk to staff about employee health
 - Access to health care
 - Sick leave options

Recommendations

- Provide instruction and means for good hand washing
- If employees are ill, potentially with influenza they should not be working with pigs
- Encourage seasonal flu vaccination of workers
- Workers should use personal protective equipment when handling potentially infectious material (e.g. feces, urine, abscesses, etc)