Vitamin D Signaling in the Bovine Immune System

Corwin Nelson1,3, Donald Beitz1,2, Timothy Reinhardt1, John Lippolis3

Department of Biochemistry, Iowa State University1
Department of Animal Science, Iowa State University2
National Animal Disease Center, United States Department of Agriculture3

Vitamin D Endocrine System

Vitamin D: Beyond Calcium Homeostasis

- Vitamin D has been implicated in a number of diseases
 - Tuberculosis
 - Autoimmune disorders (Multiple Sclerosis, Inflammatory Bowel Disease)
 - Cancer (Prostate, Colon, Breast)

- Vitamin D signaling in the immune system is distinct from the endocrine system
 - extra-renal 1,25(OH)2D3 synthesis
 - Not regulated by Ca2+ homeostasis

1α-OHase Gene Expression during Mastitis

- Three cows infected with Streptococcus uberis
- Tissue samples from three locations of the control and infected quarters

1α-OHase Gene Expression in Monocytes

- Toll-like receptors (TLR) recognize pathogen associated molecular patterns
- TLRs activate innate immune responses

1α-OHase Gene Expression in Milk Cells

- 4 cows infected with Streptococcus uberis
- Somatic cells (immune cells) isolated from milk

1α-OHase is expressed in mammary tissue during mastitis

1α-OHase is expressed in monocytes during mastitis
Summary

- Monocytes produce 1,25(OH)₂D₃ when activated
- What effect does 1,25(OH)₂D₃ have on immune responses?

Effect of 1,25(OH)₂D₃ on Monocyte Gene Expression

Vitamin D Signaling in the Immune System

Implications for Cattle Producers

- Current nutritional requirements
 - 25K IU/day for lactating cow
 - 20-50 ng/mL 25(OH)D₃
 - Based on endocrine system
- Optimal immune function
 - < 30 ng/mL is insufficient
 - More work needed
- Rising cost of vitamin D

Acknowledgments

John Lippolis
Tim Reinhardt
Don Beltz
Derrel Hoy
Duane Zimmerman
Randy Atchison