Genetic Improvement of Feed Efficiency in Swine Herds

Dr. John Mabry
Iowa Pork Industry Center
Iowa State University

Goal is Production of a High Quality Product at a PROFIT

- Profit means: \(\text{Return} > \text{Cost} \)
- \(\text{Return} \) is based on number of pigs marketed, weight of pigs, value of each pig, marketing expertise, cull sow sales

Recent Economic Trends

- Since 2000 (USA):
 - 5-6 years of very good profits,
 - 2-3 years of large losses

Recent Economic Trends

- Since last year:
 - Feed costs and energy have gone up by 100%
 - Other costs have increased, not as much
 - These increases probably won't go away

Current Profit = Major Loss

- Current return vs cost (USA):
 - 2008: \(\text{Return} < \$110/\text{pig}, \text{cost} > \$145/\text{pig} \)
 - Future
 - Input costs will not go down much
 - Market return will be higher
What Does Producer Do?

- Maximize pig flow
 - Improve reproduction through both management and genetics
- Minimize feed costs
 - Terminal sire lines focus more on FCR
 - Include FCR in maternal line selection
- Reduce Non-Productive Sow Days
 - Management and genetics

Genetic Improvement of Feed Efficiency

- Methods to make genetic improvement
- Selection
 - Measure performance and keep the best
- Migration
 - Identify animals from outside that are superior and bring them into your herd
 - Live animals or AI

Import from the Best Genetic Merit Population

- Large number of purebred GGP animals
- National program to identify where the genetically superior animals are within the population
- Demonstrated genetic improvement in the economically important traits

National Program to Identify the Genetically Superior Animals

- One example is STAGES = Swine Testing and Genetic Evaluation System
- Program of “across-herd” genetic evaluation
- Largest, most accurate national genetic evaluation program in the world

Improving Feed Efficiency Through Selection

- Select terminal breed with proven superiority for high growth rate and excellent feed conversion
- Duroc

Potential Feed Savings Terminal Sire Selection on FCR

- Heritability = 0.30
 - Moderate, will respond to selection
- Selection for fast growing, lean pigs
 - Results in improved feed efficiency
- Genetic markers for feed efficiency
Genetic Trend - Durocs
Feed Efficiency

Genetic Trend – Yorkshires
Feed Efficiency

Feed Efficiency
SGI - DUROC

<table>
<thead>
<tr>
<th>SGI CODE NUMBER</th>
<th>BOAR NAME</th>
<th>FE EBV Lb Per 100 Lb Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1332</td>
<td>YELLOW JACKET</td>
<td>-8.34</td>
</tr>
<tr>
<td>1290</td>
<td>HULK 7-1</td>
<td>-7.77</td>
</tr>
<tr>
<td>1319</td>
<td>ROJO RHINO</td>
<td>-6.55</td>
</tr>
<tr>
<td>1322</td>
<td>FOUNDATION</td>
<td>-5.13</td>
</tr>
<tr>
<td>1329</td>
<td>PILLAR</td>
<td>-4.52</td>
</tr>
<tr>
<td>1312</td>
<td>EMPEROR</td>
<td>-2.47</td>
</tr>
<tr>
<td>1331</td>
<td>LOCKDOWN</td>
<td>-2.45</td>
</tr>
</tbody>
</table>

Feed Efficiency
SGI - YORKSHIRE

<table>
<thead>
<tr>
<th>SGI CODE NUMBER</th>
<th>BOAR NAME</th>
<th>FE EBV Lb Per 100 Lb Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>2448</td>
<td>BIG THUNDER</td>
<td>-7.01</td>
</tr>
<tr>
<td>2452</td>
<td>KING DAVID</td>
<td>-5.32</td>
</tr>
<tr>
<td>2439</td>
<td>PURSH</td>
<td>-4.49</td>
</tr>
<tr>
<td>2419</td>
<td>URON</td>
<td>-4.46</td>
</tr>
<tr>
<td>2412</td>
<td>TOTAL PACKAGE</td>
<td>-3.99</td>
</tr>
<tr>
<td>2436</td>
<td>BIG UNIT</td>
<td>-3.88</td>
</tr>
<tr>
<td>2414</td>
<td>JUPITER</td>
<td>-3.60</td>
</tr>
<tr>
<td>2417</td>
<td>4-WHEELER</td>
<td>-2.77</td>
</tr>
<tr>
<td>2423</td>
<td>FROSTER</td>
<td>-2.74</td>
</tr>
<tr>
<td>2422</td>
<td>PURON</td>
<td>-1.99</td>
</tr>
<tr>
<td>2425</td>
<td>KDU</td>
<td>-0.70</td>
</tr>
</tbody>
</table>

Feed Efficiency
SGI - LANDRACE

<table>
<thead>
<tr>
<th>SGI CODE NUMBER</th>
<th>BOAR NAME</th>
<th>FE EBV Lb Per 100 Lb Gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>3328</td>
<td>SAMSTORP</td>
<td>-7.53</td>
</tr>
<tr>
<td>3349</td>
<td>CHOIKO</td>
<td>-5.20</td>
</tr>
<tr>
<td>3351</td>
<td>FALCON</td>
<td>-4.59</td>
</tr>
<tr>
<td>3342</td>
<td>TANBARK</td>
<td>-3.84</td>
</tr>
<tr>
<td>3350</td>
<td>JA MAR CYRUS</td>
<td>-3.52</td>
</tr>
<tr>
<td>3345</td>
<td>PIKRUSS</td>
<td>-2.85</td>
</tr>
<tr>
<td>3331</td>
<td>MARCO</td>
<td>-2.15</td>
</tr>
<tr>
<td>3348</td>
<td>EPITOME</td>
<td>-1.79</td>
</tr>
<tr>
<td>3340</td>
<td>ALEX</td>
<td>-0.98</td>
</tr>
<tr>
<td>3347</td>
<td>MILHAM</td>
<td>-0.98</td>
</tr>
<tr>
<td>3324</td>
<td>IZUMI</td>
<td>-0.60</td>
</tr>
</tbody>
</table>

Economic Potential
For Feed Savings

- Base feed conversion = 2.80
- Weight range 15# → 265# = 250 #
- Duroc EBV = -8.00 (#feed/100#gain)
- Transmits ½ of BV to each pig sired
Economic Potential For Feed Savings

- Transmits ½ of BV to each pig sired
- Feed savings per pig = 8 * ½ * 2.5 cwt
 - 10 # feed * $0.20/# = $2.00 / pig
- Translate that to savings/sow/year
- 20 pigs marketed/sow/year
- 20 * $2.00/pig → $40/sow/year

Iowa Pork Industry Center

Economic Potential For Feed Savings

- 20 pigs marketed/sow/year
- 20 * $2.00/pig → $40/sow/year
- If a 1000 sow herd,
 - Savings = $40,000 per year
- If a 10,000 sow herd,
 - Savings = $400,000 per year

Iowa Pork Industry Center

Maternal Line - Genetic Improvement in Feed Efficiency

- Include Feed Efficiency in the Maternal Line Index used for selection

Iowa Pork Industry Center

SGI 2446 BIG THUNDER

EPDs INDEXES

- Days -5.08
- NBA 0.43
- MLI 125.9
- Feed Efficiency -7.01
- LWT 6.81
- SPI 116.1

Iowa Pork Industry Center

SGI 3345 PIKKUS

- Sire Currently No. 1 Sire in U.S. – SPI and MLI
- Grand sire Was No. 1 Sire For Many Years – SPI and MLI

EPDs INDEXES

- Days -0.6
- NBA 0.8
- MLI 122.6
- Feed Efficiency -2.85
- LWT 4.5
- SPI 119.4

Iowa Pork Industry Center

Maternal Line - Genetic Improvement in Feed Efficiency

- Consider selection for Non-Productive Sow Days in maternal breeds
 - Yorkshire
 - Landrace

Iowa Pork Industry Center
Lower Feed Costs By Improving Reproduction Through Selection

- **Costs** to maintain the sow herd
- **Costs** to get the sows pregnant
- **Return** is from number of viable pigs weaned

Improve Reproduction Through Selection

- Which traits (of **cost** or **return**) have adequate genetic qualities to respond to selection?

Traditional Selection

- Focused on traits that are associated with outputs from the sow and her litter (**return**)
 - Litter size
 - Number born alive or Total number born
 - Litter weaning weight
 - Growth rate

Traditional Selection

- Need to expand our selection opportunities to traits that relate to the **cost of production**, if possible

Basic Unit of Cost: Breeding Female Days

- Once a female enters the herd inventory, she starts to accumulate ‘Breeding Female Days’
- Those days where she is pregnant with a successful litter are ‘Gestation Days’ that are also defined as ‘Productive Days’

Basic Unit of Cost: Breeding Female Days

- Those days where she is lactating are ‘Lactation Days’ and are also ‘Productive Days’
- All others are ‘Non-Productive Days’
Breeding Female Days Accumulation

- Entry
- Service
- Farrow
- Wean
- Service
- Removal

Factors Influencing PWSY

- Pigs weaned/sow/year
- Pigs weaned litter (NBA – PWM%)
- Cross-foster Pigs?
- Litters/sow/year
- Non productive sow days
- Gestation Length
- Lactation Length
- Farrowing Rate

Components of LSY

- Entry to first service interval (Decision)
- Farrowing rate (Confounded)
- Gestation length (little variation)
- Lactation length (Decision)
- Weaning to first service interval ($h^2 = .2$)
- Culling to removal interval (Decision)

Questions:

- How are LSY distributed?
- Will the variance component composition support genetic progress via selection?
Decrease Feed Costs - Selection for Non-Productive Sow Days

- Improve LSY by one genetic standard deviation
 - 0.2 increase in LSY = saves 23 Non-Productive sow days
 - 23 Non-Productive Sow Days ~ 100# feed
 - 100# feed = $20 per sow per year
 - $20/sow/year = $1/pig marketed/year
 - 1000 sow herd = $20,000

Terminal Cross Mating System

- Purebred animals are the basis (starting point) for all genetic programs
- There are different breeds of purebred swine that have been developed for different purposes
 - White breeds (for maternal purposes)
 - Colored breeds (for paternal purposes)

Advantages of a Terminal Cross Mating System

- Heterosis
 - you can increase the pounds of pork marketed per sow per year by +40% using an efficient terminal cross mating system
- Specialized sire and dam lines

Terminal Cross Mating System Sire and Dam Lines

- Use animals of maternal breeds for the sow lines
 - Landrace, Large White
- Use animals of sire breeds for the boar lines
 - Durocs
What is Heterosis?

- Heterosis is the increased performance of crossbred animals (above the average of their parents) because the parents are of different breeds.

Heterosis Levels

- Litters/sow/year = +18%
- Litter size = +8%
- Preweaning mortality = -5%
- Growth rate = +5%
- Pounds product/sow/year = +40%

Potential Management Areas To Improve Feed Efficiency

- Ration Formulation
- Ration Preparation
- Feeder Type & Management
- Sow Management
- General Management Practices
- Housing & Environment
- Health Program
- Market Weight

Use Of Crystalline Amino Acids

- Can Substitute Lysine for up to 2% of Crude Protein In Ration From Soybean Meal
- Above This Level Will need Other AA Acids
 - Methionine (Young Pig), Typtophan, Threonine
With High Feed Costs

- Balancing Ration More Important Than with Low Feed Costs
- Unbalances Result in Higher Feed Per Gain
 - Make Sure Mixers Are Mixing Properly
 - Check Scales that Measure Ingredients for Accuracy
- Know Nutrient Content of Substitute Ingredients

Feed Preparation

- Particle Size
 - Decreasing Particle Size when Grinding Corn
 - From 750 to 600 Micrometer will Improve Feed Efficiency
 - Should Not Cause Ulcer or Dust Problems at this Particle Size
 - Check Mills to Insure They are Producing Proper Particle Size

Pelleted Rations

- Improves Nutrient Availability
 - Results in Better Feed Efficiency
- Less Feed Waste
- In U.S. Practical to Pellet if Cost in $5 to $7 Range per Ton

Feeder Type And Management

- Adjust Feeders to Prevent Waste
- Never Allow Feed Outage
- Clean Feeders (corners) Daily
- Use of Wet-Dry Feeders
 - Reduces Feed Wasteage, increases consumption
 - Increase Palatability
 - Better feed conversion

Split Sex Penning and Split Sex Feeding

- Barrows are more aggressive than gilts
 - Male aggressiveness will retard the growth of gilts if penned together
 - Protein Requirements Higher for Gilts
 - Barrows Grow Faster

Split Sex Penning and Split Sex Feeding

- Separate penning will result in faster growth rate, better feed conversion and lower mortality rates at virtually no cost
- Split sex feeding requires investment
 - Dual feed lines in barn, or
 - Single sex barns
Add More Phased Rations

- Pigs' nutritional needs change from weaning to marketing
- The more rations are fed, the more closely each ration will meet the needs of the pigs
- Compare feeding programs of 3 grow finish rations versus 6 grow finish rations

Add More Phased Rations

- With less nutrient wastage, the feed conversion will be better
- It does take more management to increase the number of rations fed

Sow Management

- Target sows' nutrient requirements to maintain constant body condition
 - Very inefficient to gain body condition during gestation
 - And lose body condition during lactation
There Are Differences In Requirements By Parity

- Gilts & Young Sows Require Higher Protein and Energy Levels
- As Sows Become Older & Energy Requirements Lowers
- Need Higher Density of Micronutrients • Vitamins, Minerals

Sow Longevity Very Important

- Takes investment to get gilt into production
- Sows produce more pigs than gilts
- Use feet/leg soundness in gilt selection
- Housing – Flooring – Penning to Prevent • Injury or Death
- Proper Breeding Management

Proper Sow Culling Also Important

- Remove Low Producers
- Remove Open Sows Quickly ● Real-time Ultrasonic for Pregnancy Checking
- Get Gilts into Production ● Estrus Synchronization • AI Max - Matrix

Herd Health

- Probably Major Factor in Determining Your Feed Requirement Per Unit Gain ● Prevent Death Loss of Sows and Pigs ● Vaccinate to Control Disease
- Maintain High Sanitation & Bio-security
- Don’t Cut Corners on Health Inputs Just Because Feed Cost High and You are Losing Money on Each Pig Marketed You Only Lose More

Herd Health

- Practice Timely Euthanasia ● Poor performing pigs do not make a profit ● Humanely euthanize ● Sort nursery pigs aggressively before moving to finishing
Market Weight

- Feed conversion gets worse as pigs get heavier
- In general, market at lighter weights
- When feed costs get extremely high
- Have to balance cost of extra gain with market price of heavier weight

Cost Of Gain

<table>
<thead>
<tr>
<th>Cost Feed/ Lb</th>
<th>Feed/ Gain</th>
<th>Cost/ lb</th>
<th>Cost/ kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10 Previous</td>
<td>3</td>
<td>$0.30</td>
<td>$0.66</td>
</tr>
<tr>
<td>0.20 Now</td>
<td>3</td>
<td>$0.60</td>
<td>$1.32</td>
</tr>
<tr>
<td>0.30 Future?</td>
<td>3</td>
<td>$0.90</td>
<td>$1.98</td>
</tr>
<tr>
<td>0.10</td>
<td>4</td>
<td>$0.40</td>
<td>$0.88</td>
</tr>
<tr>
<td>0.20</td>
<td>4</td>
<td>$0.80</td>
<td>$1.76</td>
</tr>
<tr>
<td>0.30</td>
<td>4</td>
<td>$1.20</td>
<td>$2.64</td>
</tr>
<tr>
<td>0.10</td>
<td>5</td>
<td>$0.50</td>
<td>$1.10</td>
</tr>
<tr>
<td>0.20</td>
<td>5</td>
<td>$1.00</td>
<td>$2.20</td>
</tr>
<tr>
<td>0.30</td>
<td>5</td>
<td>$1.50</td>
<td>$3.30</td>
</tr>
</tbody>
</table>

Computerized Sow Management Programs

- Good production records are essential to the efficient management of the pig farm.
- Computerized production records are essential to maximize your profits.
- Key to identifying non-productive sows
 - And reducing non-productive sow days

Computerized Sow Data Management

- Breeding herd management.
 - Sow and boar inventories with details for each animal.
 - Accurate evaluation of reproductive performance.
 - sows, boars, ai technicians, genetic types, sires, parities, facilities
 - time frame summaries and analysis
 - data extraction for analysis

Management Software

- Post-weaning performance.
 - Growth rates, feed costs, mortalities, feed conversion (by groups of animals).
 - Feed usage, formulation, costs.
 - Facilities performance comparisons.
 - Multiple herd comparisons.
Diagnosis of Problems is First Step to Solutions

- Diagnostic capabilities.
 - Reproductive traits
 - Farrowing rates, litter sizes, pig mortality
 - Post-weaning traits
 - Death losses, growth rates, feed conversion.
 - Data extraction
 - For all sow and boar records to assist in diagnostics.

Reproductive Areas to Analyze

- General reproductive efficiency
- Boar fertility
- Sow reproduction
- Reproductive management

General Reproductive Efficiency

- Breeding performance
- Farrowing performance
- Weaning performance
- Population information

Breeding Performance

- Total number of services
- Percent repeat services
- Percent multiple matings
- Weaning to 1st service interval
- Percent bred by 7 days
- Entry to 1st service interval

Farrowing Performance

- Number farrowed
- Avg. parity farrowed
- Number born alive
- % stillborns
- % mummies
- Farrowing rate
- Farrowing interval
- Litters/sow/year

Weaning Performance

- No. litters weaned
- No. pigs weaned
- Pigs weaned/sow
- Pre-weaning mortality
- Avg. pig weaning weight
- Age at weaning
- Litter weight
- Pigs weaned/sow/yr
Population Information

- Ending female inventory
- Gilt pool inventory
- Gilts entered
- Females culled
- Female deaths
- Ending boar inventory
- Replacement rate
- Culling rate
- Death rate
- Non-productive sow days

Analyzing Boar Fertility

- Boar use report
- Boar performance report
- Database extraction

Analyzing Sow Reproduction

- Parity comparison report
- Genetic line report
- Farrowing Rate / Pregnancy loss report
- Removal analysis report
- Genetic comparison report
- Database extractions

Analyzing Reproductive Mgt.

- Action lists
- Farrowing rate / pregnancy loss report
- Multiple matings report
- Repeat service report
- Database extractions

Improvement of Feed Efficiency

- Through Sound Programs
 - Selection & Crossbreeding
 - Feeding & Nutrition
 - Management Practices and Software
 - Housing & Environment
 - Herd Health
 - Marketing Program

Action Lists

- Sows needing preg checking
- Sows found open
- Sows needing action pre-farrowing
- Sows due to farrow
- Sows farrowed but not weaned
- Sows weaned but not served
Thank You For Your Attention