Energy determination of corn co-products fed to finishing pigs and use of *in vitro* OM digestibility to predict *in vivo* ME

P. V. Anderson*1, B. J. Kerr2, G. C. Shurson3

Iowa State University, Ames¹, USDA-ARS, Ames, IA², University of Minnesota, St. Paul³

- 1 Determine the ME content of 20 corn co-products in finishing pigs
- 2 Develop an equation to predict ME based upon ingredient chemical analysis
- 3 Evaluate the ability of an *in vitro* OM digestibility assay to predict or improve the prediction of ME for corn co-products in finishing pigs

In vivo Method to Measure ME

- Eight groups of 24 finishing gilts were housed individually in metabolism crates
 (n=192, 112.7 final BW ± 7.9 kg)
- Separate but total collection of feces and urine
- Gilts were randomly assigned to one of five dietary treatments or the basal diet per period
- Each treatment was repeated across two feeding periods resulting in 8 observations per treatment
 2 periods with 4 pigs per treatment per period

In vivo Method to Measure ME Basal diet contained 97.1% corn

- Plus limestone, salt, vitamins, and TM (2.9%)
- Treatments were formulated by mixing the basal diet (70%) with the test ingredient (30%)
 Except for dried solubles (20%) and corn oil (10%)
- Feed was provided at a level equivalent to 3% BW
 - 9 day adaptation period
 - 4 day collection period
- o.
- Chemical analysis
 Feedstuffs were analyzed for moisture, starch, GE, AA, EE, CP, CF, TDF, NDF, ADF, minerals, and ash

In vitro OM Digestibility

- Used a 3-step enzymatic assay (Boisen and Fernandez, 1997)
 - Enzymes pepsin, pancreatin, and Viscozyme were used and samples were incubated for 24 h
 - · Feed samples were ground to 1 mm
 - Samples (0.5 g) were analyzed in triplicate including blanks and controls (corn)
 - After incubation all samples were filtered, dried, and ashed, to determine OM digestibility

- Data were analyzed using ANOVA of SAS
 Individual pig was the experimental unit
- · Basal diet ME was used as a covariate
- Stepwise regression was used to determine effects of feedstuff composition on the prediction of ME
 Variables with P < 0.15 remained in the model

Conclusion

- ME and OM digestibility varied substantially among corn co-products
- ME was related to OM digestibility but did not accurately predict ME
- The prediction estimate for ME based on ingredient analysis was not improved by including *in vitro* OM digestibility
- Best predictors of ME in the corn co-products evaluated were GE, TDF, and ash

Acknowledgements Project funded in part by the National Pork Board Colaborators: B.J. Kerr, USDA-ARS, Ames, IA G.C. shurson, University of Minnesota, St. Paul H.D. ryler, Iowa State University, Ames L.L. Timms, Iowa State University, Ames Students and staff: Conrad, K. Hard, T. Blum, C. Olsen, J. Johnson, T. Huenink, C. Ziemer, T. Weber, J. Cook, L. Burma, B. Jacobs, A. Hoffman, and ISU Swine Nutrition Farm staff

