The Physiology Behind Improved Feed Efficiency in Swine Nicholas Gabler Department of Animal Sciences Iowa State University

Factors Influencing Feed Efficiency

- Energy is first used for maintenance, then for protein deposition and fat deposition
- The more a pig eats after its maintenance needs, the more lean gain it will deposit
- Temperature can affect feed intake
- Heat stress will vary with geography, barn site and type and season
- Chronic and acute disease conditions decrease feed consumption

Variation in Efficiency

Five major processors may account for the variation in efficiency

- Feed Intake
- Digestion (and the associated energy costs)
- Metabolism (homeostatic, catabolic and anabolic processors) and Body Composition
- Activity
- Thermoregulation

Feed Intake

- As feed intake increases, the amount of energy expended to digest the feed increases
- o Known as the Heat Increment (thermic effect) of Feeding
- High fiber diets > high protein diets > high fat
- o Sugars are in the middle in heat increment
- o Digestion is harder and creates more heat in the process
- Net Energy (NE) system may explain why high fiber, and high protein diets have resulted in poorer performance

Feed Intake

- · Feeding behavior
 - o Low RFI pigs eat faster and less often than control pigs (Young et al., 2009)
 - o Postprandial satiety signals?
 - × Leptin
 - × Ghrelin × Insulin

 - α-Melanocyte Stimulating Hormone (α-MSH)
 Cocaine and Amphetamine Regulated Transcript (CART)
 - × PYY₃₋₃₆
 × Neuropeptide Y (NPY)
 × Pro-opiomelanocortin (POMC)

Digestion

- As the level of feed relative to maintenance increases, the digestion of feed tends to decrease
- Low RFI efficiency correlates with higher digestibility in cattle (Richardson and Herd, 2004)
- o This correlation is not seen pigs (de Haer et al., 1993)
- Absorption of nutrients in pigs in relation to feed efficiency has not been fully characterized
- Nutrient transporter number and kinetic efficiency?

Metabolism

- Feed efficiency is heavily influenced by basal metabolic rate
- Two possible physiological variation in metabolism
 - o Ion pumps (i.e., Na+/K+ ATPase)
 - o Mitochondria

Ion Channels ----

- H+, Ca+, Na+/K+ ATPase etc...
- Of the 80% of oxygen consumption coupled to ATP synthesis
 - o H+, Na+/K+ ATPase: 19-28%
 - o Ca+ATPase: 4-8%
- o Actinomyosin ATPase: 2-8%
- o Ca+ATPase: 4-8%

Mitochondria

- Free energy comes from the oxidation of food compounds (i.e., carbohydrates, lipids and protein)
- Mitochondrial inefficiencies
 - Electron transport chain coupling is better in more efficient animals
 - o Proton uncoupling from ATP synthesis and its leakage
 - o Reactive oxygen species production

Body Composition

- The deposition of the same weight of lean and fat tissue has different energy costs
 - o More variation in lean deposition
- $\circ\,$ Lean has a higher turnover rate than fat \Rightarrow energetically expensive process
- Decreased rates of protein degradation give rise to improved conversion of feed to gain in many species (Herd and Arthur 2009)
- o Of the 80% of oxygen consumption coupled to ATP synthesis
 - × Protein synthesis: 25-30%
 - × Ureagenesis: 3%

Activity

- Activity can contribute significantly to feed efficiency
- Mice with higher food intake are 3 times more active (Bunger et al., 1998)
- 80% of the genetic differences in RFI between lines of chickens divergently selected for RFI could be related to differences in physical activity (Luiting et al., 1991)
- · Feeding activity

Thermoregulation

- · Principal route of energy loss
- Heat exchange
- o The rate of respiration
- o Body size or surface area

Ad Lib. RFI Old Pigs Live BW (kg) 115.2 114.6 ADG (kg/d) 0.83 0.81 ADFI (kg/d) 2.6 2.9 Carcass (kg) 90.6 90.7 Dressing % 78.6 79.1 Carcass Water (kg) 46.1 49.7 Carcass Bone (kg) 2.6 2.5 Carcass Fat (kg) 27.2 22.4 Carcass Protein (kg) 15.6 15.7 Carcass Lean (kg) 61.7 65.4 Viscera (kg) 11.1 10.9 * P<0.05

Ad Lib. RFI Pigs Serum (Fasting)			
<u> </u>			
	Control	Low RFI	P<0.05
Glucose (mg/dL)	77.6	69.5	*
Insulin	4.88	4.73	
Glucose:Insulin	16.2	14.7	
IGF-1	223	201	
Free T3	2.0	2.5	
Free T4	1.32	1.36	
Triglycerides	16.9	20.8	*
NEFA	0.27	0.43	*
Lipemic	14.6	26.0	*
Blood Urea Nitrogen	13.7	11.9	*

RFI Data Summary

- Low RFI pigs consumed 8% less feed
- Control vs. Low RFI, same
- o Growth rate
- o Body, carcass and viscera weights
- Higher fat deposition in control pigs
- Higher carcass water content and thus lean mass in Low RFI pigs

RFI Data Summary

- Low RFI pig have higher fasting blood lipid markers
 - o Increased lipid catabolism?
 - o Lower lipid deposition compared to the control pigs?
- Control pigs have higher protein catabolism?
- o Increase blood urea nitrogen

Longissimus doris 2D-DIGE

 LD muscle protein expression from the Ad Lib pigs from the control and low RFI lines is being compared

Low RFI vs Control 2D-DIGE Data

- Control pig LD protein expression
- Higher Aldolase
- o Converts Fructose 1,6 bisphosphate → Dihydroxyacetone Phosphate (DHAP) + Glyceraldehyde 3 phosphate
- o Substrates in de novo lipogenesis
- Glyceraldehyde 3-phosphate is how glycerol (as DHAP) enters the glycolytic and gluconeogenetic pathways
- Higher Glycerol-3-phosphate dehydrogenase
 - o Important enzyme in de novo lipogenesis

2D-DIGE DATA

- Control pig LD protein expression
- Higher α -B- rystalline and Heat Shock Protein B1 (HSP27)
 - o Induced by oxidative stress
 - o Molecular chaperones of denatured proteins
- o Found in more oxidative muscle types
- Higher Creatine kinase
 - o A major enzyme of cellular energy metabolism

2D-DIGE DATA

- Control pig LD protein expression
- Higher Carbonic Anhydrase III (CAIII)
- o Catalyzes CO2 + H2O → H2CO3
- CO2 gives rise to alkaline conditions → H⁺ secretion by ATPase pumps (Requires a lot of energy)
- o Functions as an antioxidant in muscle
- o Can act as a phosphatase
- o Spares glycogen stores
- o Inhibit CAIII results in de novo lipogenesis inhibition
 - $\boldsymbol{\mathsf{x}}$ Via pyruvate carboxylase

Hypothesis and Further Research

- Low RFI pigs have decreased protein turnover and higher nitrogen retention
- Lower ATPase activity
- $\,\circ\,$ 20% of maintenance energy can be contributed to these pumps
- More of a reliance on carbohydrates for ATP
- Mitochondrial protein expression differences
- Appetite/satiety regulation

- Comparison between low and high feed efficient pigs
 - o Digestion and nutrient absorption
 - o ATPase activity or ion pumps
 - o Protein turnover
 - o Energy partitioning