Thank you for participating in SowBridge 2011-12. To start this presentation, advance one slide by pressing enter or the down or right arrow key.

SowBridge
Proper Management and Maintenance of Cool Cells

Steven Matthis
Sampson Community College
910-592-8081 ext: 7006
smatthis@sampsoncc.edu

Evaporative Cooling

One Of The Most Neglected / Abused / Forgotten Pieces of Equipment on the Farm

Maintenance Objectives

- Know What You Are Buying
- Water Requirements For Cooling
- Flushing and Bleed-off
- Cleaning Agents
- Building Requirements
- Pump and Cool Cell Sizing
- Evaporative Cooling Take Home Message

Know What You Are Buying

- Type of Material (Paper / Resin)
- Manufacturing Process (Cutting the Material)
- Design Angle (15 X 45 or 30 X 30)
- Edge Coating (Coated or Painted)
Pad Quality

Seven Years Old

Six Years Old

The University of Georgia Cooperative Extension Service

Poor Construction Methods

Smooth edges are essential for proper water flow

The University of Georgia Cooperative Extension Service

45 degrees/15 degrees

The University of Georgia Cooperative Extension Service

Weak Glue Joints

The University of Georgia Cooperative Extension Service
Pad Types – Edge Coating

- Increases pad life - typically on the order of 2-3 years with good quality edge coating.
- Reduces Tattering for given pad age.

Pad Types

- 30° x 30° Flute Angle
- 15° x 45° Flute Angle

Pad Types – Add Water

- 30° x 30° Flute Angle
- 15° x 45° Flute Angle

Pad Types – Add Water and Airflow

- 30° x 30° Flute Angle
- 15° x 45° Flute Angle

New Product From Big Dutchman

- All Plastic Construction
- Similar to the 6-inch 45/15 degree pad in cooling potential

Water Requirements

- Flow Over The Pad
- Distribution Of Water Over The Pad
- Checking The Flow (Hand Method)
Water Requirements
Flow Over Pad

Recommended Flow
- 0.75 GPM / linear foot of system
- Example 70 ft. long system
 70 ft. x 0.75 GPM/ft. = 52.5 GPM

We need 52.5 GPM delivered over the pad in a 70 ft. long system at all times.

Water Requirements
Flow Over Pad

- 0.75 GPM/ft. is about 10 times the water that evaporates
- Why so much water?
 - Prevents streaking ensuring pad is fully wet
 - Flushes dust, feed, grass clippings, and debris out
 to make the pad last longer
 - Decreases fans work load
 - Maintains proper static pressure

Water Requirements- Flow Over Pad

- Lack of Flow will cause streaking which results in less efficient pad (higher house temperatures)

Minimum Water Column Height

- 1/8” holes - 4” spacing Munters Acme
- 1/8” holes - 2 3/4” spacing CoolAir
- 1/8” holes - 3” spacing Cumberland
- 1/8” holes - 2” spacing Cumberland Hired Hand
- 5/32” holes - 4” spacing Choretime Aerotech

Measure the Water Height

The University of Georgia Cooperative Extension Service
Water Requirements - Flow Over Pad

• The Bottom Line – When you place your hand on the face of the pad water should dribble off

Not Enough Water

A Good Flow of Water Across The Pad

Water Requirements - Flow Over Pad

• Cool cells over 60' long should use a center feed distribution system

Water Requirements - Flow Over Pad

• For much longer systems, over 70-80' long, it is typically less expensive to use two pumps rather than one large pump
• This also provides other benefits
 – Safety factor since loosing 1 of 4 pumps is much less likely to result in animal loss than loosing 1 of 2 pumps in hot weather
 – Easier to transition into evaporative cooling mode since you can run 2 of the 4 pumps to provide partial cooling
Water Requirements - Pump Placement

Flushing / Bleed-off of the Cooling System
Poor Water Quality Equates to Poor Pads

Bleed Off
- Bleed off water continuously
- Start with 1 gallon per hour per linear foot
- Example: A 30 foot Cool Cell would need to bleed off 30 gallons per hour.
- Formula for calculating bleed off rate
 \[\text{GPH needed (In Minutes)} = \frac{60 \text{ min.} \times 5 \text{ gal.}}{\text{time to fill 5 gal bucket}} \]

Check PH On A Regular Basis
PH Should Be Between 6 & 8

Pad Maintenance
Salt build up from lack of bleed off ** Extreme Case **
Pad Maintenance
Lack of Bleed off - Soft Pad from High PH (PH 10.7 in this system)

No Water or Air Can Pass Through This Pad

Automatic Bleed-off Valve

Potential Hidden Problems Due To Lack Of Bleed-Off
- Evaporation potential several thousand gallons per day (3,000 to 12,000 gal.)
- Contaminate potential increases 5 to 10 fold
- In one month contaminates could increase 100 fold
- Contaminates precipitate on the surface of the pad
- Maintain PH levels between 6 and 8
- Algae Growth on the pads

Potential Hidden Problems
- Calcium and Magnesium are linked to Alkalinity problems
- Cal and Mag settle out and clogg Flues

Cleaning Agents
Check Manufacture’s Recommendations
Chlorine (Not Recommended)
Cleaning Agents

• Chlorine (Not Recommended by most cool cell Manufacturers)
• Follow the Manufacture’s recommendations for proper treatment
• When Calculating Disinfectant Dosages, use the following Formula.

Calculating Disinfectant Dosages

Dose Size (Fluid Ounces) = Desired PPM x Sump Capacity (Gallons)
Percent Active Ingredient x 78
Example:
Dose Size = 2 PPM x 250 gallon
5.25% x 78
Dose Size = 1.22 fluid oz.

Maximum Recommended Dosages

• Quaternary Ammonia 30 – 50 ppm
• Oxidizing Biocides 1-2 ppm
• Coppers Not Recommended
• Manufactures may recommend a different amount, use the lesser amount

Pad Maintenance
- Do not use Harsh Chemicals for Algae control

Chlorine – Backpack Sprayer Applied

Building Requirements

Pad Rooms
Tight Curtains
Tunnel Curtains

Pad Rooms / Dog Houses

• Need to Seal tightly so that all the incoming air enters through the cooling pad
• Ceiling installed
• Poured or Gravel Floor
Pad Rooms / Dog Houses

- Ideally the tunnel window should be the same size as the cooling pad
- At a minimum the tunnel window should be at least 80% of the pad height

Tunnel Curtains

- Need to seal tightly
- Flap at closure to prevent leaks

Pump Cool Cell Sizing

Water Requirements Flow Over Pad

- Pump Sizing - 70 ft. system requires 52.5 GPM "over the pad"
- When sizing the pump we must consider the pressure losses of the piping system.

Water Requirements Flow Over Pad

- Losses Include
 - 6-8' elevation
 - 8-10' of pipe
 - Strainer
 - Elbow or Tee
- Typically these Losses run around 15 – 20 ft total head pressure

Water Requirements Flow Over Pad

- So look for a pump that delivers the required flow rate at 15 – 20 ft. of head pressure
- From our 70 ft system example.
- Pump should deliver a minimum:

 52.5 GPM @ 15-20 ft. of head pressure.
System Sizing – 6" Pad – system on each side of house

<table>
<thead>
<tr>
<th>CFM @ 0.05" w.c.</th>
<th>4' Pad</th>
<th>5' Pad</th>
<th>6' Pad</th>
</tr>
</thead>
<tbody>
<tr>
<td>180,000</td>
<td>60</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>200,000</td>
<td>70</td>
<td>55</td>
<td>45</td>
</tr>
<tr>
<td>220,000</td>
<td>75</td>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>240,000</td>
<td>80</td>
<td>65</td>
<td>55</td>
</tr>
<tr>
<td>260,000</td>
<td>90</td>
<td>70</td>
<td>60</td>
</tr>
<tr>
<td>280,000</td>
<td>95</td>
<td>75</td>
<td>65</td>
</tr>
<tr>
<td>300,000</td>
<td>100</td>
<td>80</td>
<td>70</td>
</tr>
<tr>
<td>320,000</td>
<td>110</td>
<td>90</td>
<td>75</td>
</tr>
</tbody>
</table>

Tank Kit
* Rounded up to 5' increment

Water Requirements – System Supply

From our Example House:
Assume House is located in Alabama.
Peak Evaporation Rate = 0.78 GPM / 20,000 CFM

\[
246,400 \, \text{CFM} \times \frac{0.78 \, \text{GPM}}{20,000 \, \text{FPM}} = 9.6 \, \text{GPM}
\]

We need to ensure our Wells (Water Supply) and Piping can supply a minimum of 9.6 GPM / house to ensure we don't have an issue with the systems running out of water in extreme Hot / Dry weather.

Water Requirements – System Supply

• Supply water requirements for 6" pad vary depending on Climate / Weather conditions

<table>
<thead>
<tr>
<th>Pad Efficiency</th>
<th>75%</th>
<th>75%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Bulb (F)</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>Wet Bulb (F)</td>
<td>78.5</td>
<td>66</td>
</tr>
<tr>
<td>RH %</td>
<td>50</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tunnel CFM</th>
<th>GPM</th>
<th>GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>180,000</td>
<td>3.2</td>
<td>11.0</td>
</tr>
<tr>
<td>220,000</td>
<td>4.0</td>
<td>13.4</td>
</tr>
<tr>
<td>280,000</td>
<td>4.7</td>
<td>15.8</td>
</tr>
<tr>
<td>300,000</td>
<td>5.4</td>
<td>18.3</td>
</tr>
<tr>
<td>340,000</td>
<td>6.1</td>
<td>20.7</td>
</tr>
<tr>
<td>380,000</td>
<td>6.8</td>
<td>23.2</td>
</tr>
<tr>
<td>420,000</td>
<td>7.5</td>
<td>25.6</td>
</tr>
<tr>
<td>460,000</td>
<td>8.3</td>
<td>28.0</td>
</tr>
</tbody>
</table>

Evaporative Cooling Take Home Message

Proper Amount Of Water
Algae
Scale

Pad Maintenance Highlights

• Run the recommended amount of water over the Pads
• Reduce Algae Growth
• Clean Distribution Pipe Holes on a regular basis
• Maintain bleed-off 1 gal / hr / linear foot of system
• Reduce the number of on/off cycles
• Check for Air Leaks in Cool Cell room
• Change filter on a regular basis
Where to Get More Information

• Aerotech - A Munters Company – Isaac Singletary
 http://www.aerotech-inc.com
• Auburn University – Jim Donald
 http://www.poultryhouse.com
• University of Georgia – Mike Carick -Brian Fairchild /http://www.poultryventilation.com
• University of Illinois – Bess Labs
 http://www.bess.uiuc.edu