Thank you for participating in PorkBridge 2010-11. To start the presentation, advance one slide by pressing "enter" or the down arrow or right arrow key. To see the additional file on this CD, click on the title below.

Mycotoxin contamination of corn, IPIC 12 (pdf)

Mycotoxins Today
Dr. Bob Thaler
Extension Swine Specialist
SDSU

Molds & Mycotoxins

- Two different issues
 - Molds produce mycotoxins
 - Molds aren’t the problem, mycotoxins are, and can impact animal performance
 - All molds aren’t bad
 - Can be mycotoxins on wheat, barley, oats, corn

Factors Affecting Mold Growth

- Molds need moisture and heat to grow
- Weather - probably #1 factor
 - temperature, humidity, rain, hail
 - Previous year’s mycotoxins have no effect
- Kernel damage
 - insects, physical damage, quality factors
- pH level, oxygen, moisture migration (in bins)
- Can grow any time of year

Mold is inhibited by:

- Dryness (12-14% grain moisture)
 - 18% corn can be stored for 1.1 months at 70F
 - 13% corn can be stored for 26 months at 70F
- Cold conditions (temps below 50 deg. F)
- If drying capacity is overloaded (it probably is):
 - Dry to 17-18% and then aerate to 14% moisture
 - Dry to 17-18% and either sell or use by spring
 - Dry corn in two passes (17-18% first & then 14% later)
Mold is inhibited by:

- Proprionic acid, preservatives
 - make grain un-saleable
- Ensiling properly
- Light test weight corn does not store as well, and storage time can be reduced by 50%

Maximum Tolerance Levels of Selected Mycotoxins

<table>
<thead>
<tr>
<th>TOXIN</th>
<th>Class of Swine</th>
<th>Maximum Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin</td>
<td>Breeding</td>
<td>.1 ppm</td>
</tr>
<tr>
<td></td>
<td>Nursery</td>
<td>.020 ppm</td>
</tr>
<tr>
<td></td>
<td>Growing</td>
<td>Not determined</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>.2 ppm</td>
</tr>
<tr>
<td>Vomitoxin (DON)</td>
<td>All classes</td>
<td>1 ppm</td>
</tr>
<tr>
<td>Zearalenone</td>
<td>Breeding</td>
<td>2 ppm</td>
</tr>
<tr>
<td></td>
<td>Nursery</td>
<td>1 ppm</td>
</tr>
<tr>
<td></td>
<td>Growing</td>
<td>1 ppm</td>
</tr>
<tr>
<td></td>
<td>Finishing</td>
<td>3 ppm</td>
</tr>
<tr>
<td>Fumonisins</td>
<td>All classes</td>
<td>18 ppm</td>
</tr>
</tbody>
</table>

Why Can There Still Be Problems Even If Grain is at Acceptable Levels?

- Not a representative sample taken
- Dealing with more than one mycotoxin
- Difference between natural and “spiked” mycotoxins in research
- Masked mycotoxins:
 - conjugated mycotoxins that aren’t detected but are released after hydrolysis in the GI tract

Cladosporium, Penicillium, Trichoderma

- Surface contaminants mostly
- Easily rubbed-off
- “Generally” non-toxigenic
- May increase mold losses in storage
 - spoilage, dry matter reduction
- May be less palatable to livestock
Aspergillus

• Major mycotoxin concern when hot, dry
 – Yellow-green or grey green mold

• Produces Aflatoxins

• More of a problem in southeast US than in the traditional Cornbelt

• Pockets can occur in Cornbelt

Aflatoxin

• Very potent mycotoxin
 – ppb vs ppm

• Carcinogen
 – FDA max limits of 20 ppb in grain & feed
 – .5 ppb in milk

• Reduced weight gain
• Impaired immune system
• Death

Fusarium / Gibberella

• G. zeae (F. graminearum) is often red or pink in color
 – may produce abundant mycotoxins
 – vomitoxin=DON, nivalenol, zearalenone

• F. verticilliodes, white, abundant mycelium
 – fumonisins
Fusarium

- Deoxynivalenol
- Reduced feed intake, vomiting, & impaired immune system
- Nursery pigs more susceptible (0.5 ppm)
- Mold that produces DON also produces zearalenone so both may be present

DON or Vomitoxin

- Deoxynivalenol
- Reduced feed intake, vomiting, & impaired immune system
- Nursery pigs more susceptible (0.5 ppm)
- Mold that produces DON also produces zearalenone so both may be present

Zearalenone

- Produces estrogenic-like responses
 - Red, swollen vulvas on pre-pubertal gilts
- Infertility, pseudo-pregnancies, breeding problems, rectal & vaginal prolapses
- May cause boars to become infertile

Fumonosins

- B1 most common forms in corn
- Reduced gains & feed efficiency
- Pulmonary edema
- Formation is encouraged by period of drought followed by warm, wet weather

Diplodia

- No toxins produced
- Mushroom-like in smell and feel
- May have palatability issues

Penicillium

- No specific information provided

Gibberella

- No specific information provided
Testing for Mycotoxins

- **Two types of tests**
 - **Quick tests**
 - Commercially available ($10-$50 per sample)
 - Specific mycotoxins
 - Few hours to 1 day
 - Qualitative, not quantitative
 - **Quantitative tests**
 - Can test for multiple mycotoxins
 - Done in a lab with a HPLC
 - $75-$150/sample

- Black light screening only detects live mold, not dead mold or mycotoxins

Ethanol

- **The issue is DDGS**
 - Mycotoxin level in the corn is tripled in the DDGS
 - Ethanol process does NOT inactivate the mycotoxins

- **Receiving plants are testing**
 - Check a plant's testing procedure and rejection standards before buying DDGS

- **Make sure mycotoxin standards & penalties are written into DDGS contracts**

Additives

- **There are NO legally FDA approved mycotoxin binders**

- **Clay binders & anti-caking agents (bentonite, sodium aluminosilicates) will tie up alfatoxins, but ineffective against other mycotoxins like DON, zearalenone, fumonisin**

- **They can also tie-up minerals and antimicrobials**

Feeding Mycotoxin-Contaminated Grains

- **Once the grain is contaminated with mycotoxins, there is NOTHING you can do to remove it!**

- **Drying down the wet grain, adding a mold inhibitor, etc will stop any future mold growth but will not inactivate the mycotoxins already present**

Testing for Mycotoxins

- **Get samples from many different areas of the field since the whole field may not be affected**
 - Use a grain probe to sample throughout the truck
 - Collect samples during the entire unloading process
 - Take at least 10-12 samples

- **Want 10 lbs shelled grain/silage**
 - Send in a cloth or paper bag

- **Needs to be below 18% to test**
 - if wet, may skew the results a bit
 - additional growth/toxin during transit

Diplodia ear mold - white, packed mycelium
no toxins produced, reduces grain weight
• Commercially available additives are not consistently effective against DON, Zearalenone, Fumonosins

• They may lessen the effects of mycotoxins, but won’t totally alleviate the problem

• Might consider adding them as an “Insurance Policy”

• Blend contaminated grain with “clean” grain to get below problem levels
 – Adding 50% corn w/ 1 ppm DON with clean grain will result in a diet with .5 ppm DON

• Screen-clean grain before putting in bins since screening can concentrate mycotoxins

• Wear a N-95 rated mask or respirator when working with moldy grain
 – “Grain Dust Pneumonia”

• Strategically feed contaminated grains
 #1 finishing pigs (120 lbs – mkt) 53% of feed used
 #2 growing pigs (50 – 120 lbs) 22% of feed used
 #3 cull sows

 Keep out of breeding herd & nursery diets
 - Use old crop corn, clean new crop corn, and alternate feedstuffs (barley, milo, etc) in sow and nursery diets

• Feeder Management
 • Data from the Pipestone System
 – Feed taken from feeders in farrowing crates

 • DON Levels
 – Day 4 .8 ppm
 – Day 10 1.0 ppm
 – Day 16 1.8 ppm

 • Feed management is a continual process

• Other Concerns
 • Closely monitor corn in bins early spring when it starts to warm up
 – South side of bin may get enough radiant heat to restart mold growth even with cold air temperatures
 – Continue to aggressively dry grain
 – Consider adding mold inhibitors

 • Mycotoxins will be concentrated in grain screenings, and possibly in the syrup/solubles from ethanol plants so limit their use

 • There may be more than 1 mycotoxin present in a sample, and the effects are additive

 • This summer, re-evaluate operation’s ability to realistically handle & dry today’s larger grain yields in a timely manner

 • Monitor grain throughout the growing season and be prepared before harvest for mycotoxins