Thank you for participating in PorkBridge 2014.

To start the presentation, advance one slide by pressing “enter” or the down arrow or right arrow key.

Optimizing Feed Efficiency to Maximize Your Bottom Line

Dr. Joel DeRouchey
Swine Extension Specialist
Kansas State University
jderouch@ksu.edu
785-532-2280
www.KSUswine.org

The key is to optimize, not simply chase F/G at all costs (feed, labor, capital).

Optimizing F/G

- Dr. Steve Pollman, Murphy Brown LLC, advised attendees at the 2011 International Conference on Feed Efficiency in Omaha, NE that feed efficiency is a useful metric in pork production but it is a poor driver for decision making.
- He was making the point that feed efficiency numbers can be influenced by so many factors that interpreting them can be difficult and that there is a great risk in over-simplifying the many things in the barn that can alter feed efficiency.
- Furthermore, the best feed efficiency is not necessarily going to lead to the highest net income.

Presentation Outline

- Guide to Troubleshooting Feed Efficiency
 - High feed disappearance
 - Low ADG
 - Other factors
 - Feed processing
- Additional resources

Feed Efficiency

- High feed disappearance
 - Genetics
 - Feed wastage
 - Temperature
 - Mortality
 - Feed delivery
 - Amino acid deficiency
 - Low Energy diets
- Low ADG
 - Disease
 - Genetics
 - Feed availability
 - Water availability
 - Diet deficiency
 - Temperature
- Other factors
 - Particle size
 - Diet form

Tokach, 2012
Feed Efficiency

- Genetics
- Feed wastage
- Temperature
- Mortality
- Feed delivery
- Amino acid deficiency
- Low Energy diets

High Feed Disappearance

- Genetics
 - Lower lean, high feed intake genetics will often have poorer F/G

High Feed Disappearance (usage)

- Feed wastage
 - Poor adjustment with pans greater than 60% covered can increase feed wastage, especially in late finishing
 - Old feeders with poor feeder design or inability to adjust will increase wastage

Proper Feeder Adjustment

- Approximately 50% pan coverage without accumulations in the pan corners.

High Feed Disappearance (usage)

- Effective temperature
 - If temperature is too low, pigs will increase their feed intake to maintain body temperature. Because the feed is going towards heat needs and not growth, feed efficiency will become

<table>
<thead>
<tr>
<th>Item</th>
<th>TEMPERATURE, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50</td>
</tr>
<tr>
<td>ADG, lb</td>
<td>1.70</td>
</tr>
<tr>
<td>ADFI, lb</td>
<td>4.86</td>
</tr>
<tr>
<td>Feed/gain</td>
<td>2.91</td>
</tr>
</tbody>
</table>

Summary of 3 experiments; Stahly and Cromwell, 1979, 1981.
High Feed Disappearance (usage)

- Mortality
 - Mortality late in the finishing period can lead to feed disappearance calculations being high for the pigs remaining at the end of the period.
 - Each 1% increase = 0.06 in F/G
 - F/G = Total feed delivered / Weight out – Weight in

- Feed delivery
 - Records of deliveries should be checked to ensure that feed credited to the group was not delivered to another group
 - If two deliveries are noted closely together in a time period that is not feasible, it could be a data entry error
 - Review feed budgets to make sure the correct amount of each diet is being fed

High Feed Disappearance (usage)

- Diet deficient (amino acids)
 - Inadequate lysine or other amino acids will often lead to an increase in feed usage as a result of lower ADG to make poorer F/G
 - Can be a problem if feed is not budgeted correctly (ex. switching diets too soon)

High Feed Disappearance (usage)

- Dietary Energy
 - Experiments indicate that the value ranges from a 0.7% to 2.4% increase in dietary energy to create a 1% improvement in feed efficiency.
 - The variation is a result of several factors and exactly why it is important to determine what effect energy has on feed efficiency.
 - As feedstuffs that supply dietary energy increase in price, there is more incentive to determine the energetic efficiency in addition to the feed efficiency of the pigs on a particular diet.
Added Fat Recommendations

• Should I have fat in my diets currently?
 – Long on space = No
 • Gain improvements not required while increasing feed cost
 – Short on space = Yes/No/ Maybe
 • Evaluate net return and determine optimum level by dietary phase.
 • Strategy should be different as economics change (corn-fat-market prices)

• Which season are pigs to be marketed?
 – Pigs placed in midsummer/fall/early winter months can/should forgo added fat due to growth rate improvements to come with cooler weather.
 – Late Spring/Summer marketed pigs have more potential revenue benefit to be fed added fat starting in February/March to capture growth rate (carcass weight advantages)

Energy use by the pig

Gross energy ➔ fecal energy
Digestible energy ➔ urinary energy
Metabolizable energy ➔ maintenance

Low ADG - Disease

• Disease or other stress
 – Disease problems that lower ADFI will greatly lower ADG. High mortality will increase F/G by about 1.5% for each 1% increase in mortality.
 – Stressors are additive
 • Reducing stress will improve F/G

Effect of PCV2 Vaccination on Feed Efficiency

<table>
<thead>
<tr>
<th>Feed/gain</th>
<th>Control</th>
<th>Vaccine</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.57</td>
<td></td>
<td>2.52</td>
</tr>
<tr>
<td>P < 0.01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Low ADG – Feed Availability

- Feed availability
 - Limiting feed intake intentionally or unintentionally (Plugged or empty feeders or bins) will lower ADFI and ADG
 - High stocking density will decrease ADFI and ADG

Low ADG – Water Availability

- Water availability
 - Lack of water availability will reduce ADFI and ADG and F/G will get worse
 - Plugged nipples, dirty cups, low water pressure

Low ADG – Diet Deficiency

- Diet deficient (amino acids, salt, other)
- Often feed intake is reduced as a result of a diet deficiency
 - Amino acid deficiencies
 - Inadequate salt levels will greatly reduce ADG

Low ADG – Barn Temperature

- Effective temperature
 - High environmental temperature will decrease ADFI and ADG.
 - Feed efficiency is not altered much by high temperature, unless it is so high that feed intake is close to the maintenance requirement. Then, F/G will become poorer because there is less energy available for ADG since more of it is going towards maintenance requirements.

Feed Efficiency

- Other factors
 - Particle size
 - Diet form

- Every 100 microns:
 1. F/G improves by ~1.2%
 2. 7 lbs less feed/finishing pig
 3. Current $0.98/pig savings in feed cost
Grain Particle Size

- F/G directly impacted by cereal grain particle size
- Research in high co-product ingredients
 - No benefit to grinding DDGS, wheat middlings, soybean hulls, and soybean meal
 - Whole diet grinding – not a benefit in meal diets

Effects of particle size on feed efficiency

Pelleting on growth performance of grow-finish pigs 2005 to 2011

<table>
<thead>
<tr>
<th>Reference</th>
<th>Meal ADG F/G</th>
<th>Meal ADG F/G</th>
<th>Pellet ADG F/G</th>
<th>Pellet ADG F/G</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groesbeck et al. (2005)</td>
<td>0.83 1.25</td>
<td>0.90 1.22</td>
<td>0.62 1.43</td>
<td>0.65 1.37</td>
</tr>
<tr>
<td>Groesbeck et al. (2006)</td>
<td>0.80 1.25</td>
<td>0.78 1.17</td>
<td>1.95 2.12</td>
<td>2.05 2.07</td>
</tr>
<tr>
<td>Potter et al. (2009)</td>
<td>1.92 2.83</td>
<td>2.04 2.68</td>
<td>1.81 2.76</td>
<td>1.94 2.82</td>
</tr>
<tr>
<td>Myers et al. (2010)</td>
<td>1.92 2.86</td>
<td>2.03 2.70</td>
<td>1.96 2.73</td>
<td>1.97 2.67</td>
</tr>
<tr>
<td>Frobose et al. (2011)</td>
<td>1.46 1.72</td>
<td>1.43 1.63</td>
<td>1.56 1.97</td>
<td>1.69 2.06</td>
</tr>
<tr>
<td>Average</td>
<td>1.61 2.14</td>
<td>1.69 2.06</td>
<td>1.96 2.75</td>
<td>2.03 2.70</td>
</tr>
</tbody>
</table>

Average response = 5.0% for ADG and 4.0% for F/G
Thank you!

WWW.KSUswine.org